Kentwood Park (Bushy Branch) Stream Restoration Monitoring Report EEP Project # 205 Monitoring Year – 03 2007

Submitted to:

NCEEP, 1652 Mail Service Center, Raleigh, NC 27699-1652

February 2008

Monitoring Firm

Landmark Center II, Suite 220 4601 Six Forks Road Raleigh, NC 27609 Phone: (919) 783-9214 Fax: (919) 783-9266

Project Contact: Adam Spiller Email: <u>aspiller@kci.com</u>

Design Firm

TABLE OF CONTENTS

1.0	PROJECT BACKGROUND	.1
1.1	Project Objectives	1
1.2	Project Structure, Restoration Type and Approach	1
1.3	Location and Setting	1
1.4	Project History and Background	1
1.5	Monitoring Plan View	5
2.0	PROJECT CONDITIONS AND MONITORING RESULTS	6
2.1	Vegetation Assessment	6
2.1 2.2.	Vegetation Assessment Stream Assessment	6
2.1 2.2. 2.	Vegetation Assessment Stream Assessment 2.1 Bankfull Event and Stability Assessment	6 6
2.1 2.2. 2. 2.	Vegetation Assessment Stream Assessment 2.1 Bankfull Event and Stability Assessment 2.2 Stability Assessment Table	6 6 6

LIST OF TABLES

3 3
3
ł
5
5
5
3
0

LIST OF FIGURES

Figure 1.	Vicinity Map	2
Figure 2.	Monitoring Plan View	5

APPENDIX A – VEGETATION DATA

A1.	Vegetation Data Tables	15
A2.	Representative Vegetation Problem Area Photos	17
A3.	Vegetation Monitoring Plot Photos	20

APPENDIX B – GEOMORPHOLOGIC DATA

B1.	Representative Stream Problem Area Photos	24
B2.	Stream Photo Stations	27
B3.	Qualitative Visual Stability Assessment Table	
B4.	Cross Section Plots	
B5.	Longitudinal Plots	
B6.	Pebble Count Plots	41

APPENDIX C – CURRENT CONDITIONS PLAN VIEW

C1. Current Conditions Plan View	.47
----------------------------------	-----

EXECUTIVE SUMMARY

The Wetlands Restoration Program identified Bushy Branch in Kentwood Park as a restoration project in 2000. The watershed of approximately 1.4 square miles is located within the USGS 14-digit HUC 03020201090010 and the NCDWQ Sub-basin 03-04-02 of the Neuse River Basin. The project restored approximately 1,400 linear feet of channel, 1,070 feet on Bushy Branch and 350 feet on an unnamed tributary to Bushy Branch (UT to Bushy Branch). The restoration was designed to correct various problems with the existing stream corridor including unstable channel configuration, poor water quality, minimal bed features, exotic and invasive vegetation, and poor stream and riparian habitat. The restoration plan was completed in 2002 and called for correcting these problems by stabilizing stream banks, installing in-stream structures, adjusting stream planform, and replanting the riparian areas with native vegetation. Project construction occurred in 2002. This report describes the findings of the third year monitoring that took place in 2007.

The restoration plan called for the removal of all existing problem vegetation along the stream banks and within the riparian buffer. The as-built survey found the original planting of native vegetation to be unsuccessful. To correct the initial failure, a remedial vegetation plan was designed and implemented in 2004. Remedial vegetation was planted at a density of 4,840 stems per acre in the streamside community and 680 stems per acre in the bottomland hardwood community. The vegetation monitoring plots were established during the as-built survey. Three plots were surveyed and the corners marked with metal conduit for future monitoring. The third year monitoring counted an average of 1,984 stems per acre in the streamside community based on plots 1 and 2, and 1,255 stems per acre in the bottomland hardwood community based on plot 3. The use of the park's disc golf course continues to have a detrimental effect on the vegetation of UT to Bushy Branch and on the west bank of the upper 250 feet of Bushy Branch. The damage to the vegetation primarily consists of bare banks due to foot traffic from disc golf players retrieving discs from the stream area. Some damage is due to direct impact of the flying discs on the planted vegetation. Microstegium (Microstegium vimineum) is a prominent invasive plant documented throughout the site. There are also a few areas where kudzu (Pueraria lobata) is present and should be controlled as soon as possible. The third year monitoring found the vegetation component of the project to be successful excluding these invasive populations.

The stream assessment completed during the third year of monitoring found Bushy Branch to be functioning. Channel dimensions have not changed drastically from the as-built conditions with the exception of some areas of bank erosion and lateral adjustment of the channel. The third year monitoring profile shows bed degradation from Station 16+25 to 16+50 in comparison to the asbuilt profile. Bed aggradation is also present from Stations 11+10 to 11+60 and 12+50 to 13+00. UT to Bushy Branch also shows areas of bed aggradation and degradation when the profile is compared to the as-built profile. The most notable problem on the UT to Bushy Branch is an area of bed degradation near Station 02+20. The header stone of the upstream structure has fallen into the pool and a headcut has begun. Many of the in-stream structures are functioning across the project site, though several are experiencing stress evidenced by localized erosion on cross vane arms. Overall, the most extensive stream problem is the instability of the banks along various parts of Bushy Branch. These bank erosion issues are detailed in the following report and should be closely monitored to determine if repairs are warranted.

1.0 **PROJECT BACKGROUND**

1.1 **Project Objectives**

- Installation of in-stream structures to define additional bed features.
- Relocate a section of the stream in order to restore stream pattern. •
- Grade severely eroding banks and excavate new bankfull benches. •
- Install root wads to promote bank stability. •
- Revegetate the adjacent banks to promote the establishment of native plant communities. •

1.2 **Project Structure, Restoration Type and Approach**

A previously incised channel, Bushy Branch, and an unnamed tributary were restored using channel dimension, pattern, and profile modifications and the establishment of a vegetated riparian zone adjacent to the stream. Channel profile is maintained through the use of rock cross vanes. A new channel pattern was constructed through the use of single vanes, root wads, and vegetation along the channel banks. Due to heavy site use and low planting success, a corrective vegetation and stream maintenance plan have been implemented since initial project completion.

1.3 **Location and Setting**

Bushy Branch and an unnamed tributary are located in Kentwood Recreational Park within the city limits of Raleigh, North Carolina. The 1.33 square mile watershed has a park setting surrounded by urban residential development with little potential for future development.

0	U	8					
Table 1. Project Restoration Components							
Project Number and Name: 205 - Kentwood Park (Bushy Branch)							
Segment / Reach ID T T T T T T T T T T T T T T T T T T							
Bushy Branch	N/A	R	P1/2/3	1,070	10+00 - 20+70		
UT to Bushy Branch	N/A	EII	P3	350	00+00 - 03+50		
R = Restoration $P1/2/3$ = Combination of Priority 1, 2, and 3							

1.4 **Project History and Background**

R = Restoration EII = Enhancement II

P3 = Priority 3

Table 2. Project Activity and Reporting History Project Number and Name: 205 - Kentwood Park (Bushy Branch)				
Activity or Report	Actual Completion or Delivery			
Restoration Plan	Apr-00	Mar-07		
Final Design - 90%				
Construction		2002		
Stream Maintenance Plan		Feb-07		
Stream Repair and				
Maintenance Seeding		2004		
As-Built Report		Feb-07		
Year 1 Monitoring	Jul-07	Jan-07		
Year 2 Monitoring	Jun-07	Jan-07		
Year 3 Monitoring	Nov-07	Jan-07		

Table 3. Project Contact Table				
Project Number and Name: 205 - Kentwood Park (Bushy Branch)				
Design Firms	Arcadis G&M of North Carolina, Inc.			
	2301 Rexwoods Dr., Suite 102			
	Raleigh, North Carolina 27607			
	Contact: Mr. William Scott Hunt, III			
	Phone: (919) 782-5511			
	Fax: (919) 782-5905			
Construction Contractor	Shamrock Environmental Group			
	6106 Corporate Park Dr.			
	Brown Summit, North Carolina 27214			
	Contact: Mr. Bill Wright			
	Phone: (336) 375-1989			
	Fax: (336) 375-1801			
Vegetation Design Firm	EcoScience Corporation			
(2004 Vegetation and Stream	1101 Haynes St., Suite 101			
Maintenance Plan)	Raleigh, North Carolina 27604			
	Contact: Mr. Jens Geratz			
	Phone: (919) 828-3433			
	Fax: (919) 828-3518			
Supplemental Vegetation and	Seal Brothers			
Structure Repair Contractor	P.O. Box 86			
	Dobson, North Carolina 27017			
	Contact: Mr. Brian Seal			
	Phone: (336) 710-3560			
Monitoring Performer	KCI Associates of NC			
MY-01, 02, 03	Landmark Center II, Suite 220			
	4601 Six Forks Rd.			
	Raleigh, NC 27609			
	Contact: Mr. Adam Spiller			
	Phone: (919) 783-9214			
	Fax: (919) 783-9266			

Table 4. Project Background Table Project Number and Name: 205 – Kentwood Park (Bushy Branch)					
Project County	Wake County				
Designed Area	1.27 sq. mi. (Bushy Branch)				
Drainage Area	0.06 sq. mi. (UT to Bushy Branch)				
Drainage Impervious Cover Estimate	45%				
Stroom Order	Second Order (Bushy Branch)				
	First Order (UT to Bushy Branch)				
Physiographic Region	Piedmont				
Ecoregion	Northern Outer Piedmont				
Rosgen Classification of As-built	C4/B4				
Dominant Sail Tymes	Wehadkee and Bibb Soils (Bushy Branch)				
Dominant Son Types	Wehadkee and Bibb Soils (UT to Bushy Branch)				
Defemance Site ID	UT to Lake Wheeler				
Reference Site ID	UT to Mine Creek				
	03020201090010 (Bushy Branch)				
USGS HUC for Project and Reference	03020201110010 (UT to Lake Wheeler)				
	03020201080020 (UT to Mine Creek)				
	3-04-02 (Bushy Branch)				
NCDWQ Sub-basin for Project and Reference	03-04-02 (UT to Lake Wheeler)				
	3-04-02 (UT to Mine Creek)				
	C - NSW (Bushy Branch)				
NCDWQ Classification for Project and Reference	N/A (UT to Lake Wheeler)				
	N/A (UT to Mine Creek)				
Any portion of the project segment 303d listed?	No - not rated				
Any portion of the project segment upstream of a 303d	NT/A				
listed segment?	N/A				
Reasons for 303d Listing or Stressor	N/A				
% of Project Easement Fenced	0%				

* INDICATES AS-BUILT STRUCTURE THAT WAS NOT ORIGINALLY INCLUDED IN THE AS-BUILT DRAWING

		RE COORDII	NATES	
#1	LB RB	NORTHING 4926.60 4900.65	EASTING 4867.91 4895.52	
#2	LB RB	5000.00 4968.67	5000.00 5000.00	
#2A	LB RB	4841.45 4813.25	5170.71 5114.21	
#3	LB RB	4820.56 4723.49	5259.23 5219.47	
#4	LB RB	4651.82 4611.46	5430.88 5389.46	
OT #1		4931.15 4954.36 4909.86 4932.60	4873.69 4896.34 4898.86 4921.73	
OT #2		4819.84 4823.76 4844.74 4798.86	5161.42 5206.52 5182.31 5185.63	
DT #3		4619.82 4651.83 4644.35 4612.48	5305.75 5312.74 5344.63 5338.48	
FION 5				
CTION 4 IE*	4 — CROSS VA ≣	ANE		WOOD PARK (BUSHY BRANCH)
PROFILI 10.51 14.29	E			KEN1

2.0 PROJECT CONDITIONS AND MONITORING RESULTS

2.1 Vegetation Assessment

See vegetation assessment in Appendix A and Current Conditions Plan View in Appendix C.

2.2. Stream Assessment

See stream assessment in Appendix B and Current Conditions Plan View in Appendix C.

2.2.1 Bankfull Event and Stability Assessment

2.2.1.a Verification of Bankfull Events Table

Table 5. Verification of Bankfull Events Project Number and Name: 205 - Kentwood Park (Bushy Branch)						
Date of DataDate ofMethodPhoto NumberCollectionOccurrence						
06/15/06	6/14/2006	Site visit to evaluate stage indicators after storm event	N/A			
07/11/07	Unknown	Crest Gauge	N/A			
11/12/07	Unknown	Crest Gauge	N/A			

2.2.1.b BEHI and Sediment Export Table

Table 6. BEHI and Sediment Export Estimates	
Project Number and Name: 205 – Kentwood Park (Bushy Branch)	
To Be Conducted During Monitoring Year 05	

2.2.2 Stability Assessment Table

Table 7a. Categorical S Project Number and Na Segment/Reach: Bushy	stream Feat ame: 205 – Branch (1,	ure Visual S Kentwood H 070 ft.)	Stability Ass Park (Bushy	sessment Branch)		
Feature	Initial	MY - 01	MY - 02	MY - 03	MY - 04	MY - 05
A. Riffles	100%	98%	75%	75%		
B. Pools	100%	92%	94%	94%		
C. Thalweg	100%	75%	75%	75%		
D. Meanders	100%	75%	72%	81%		
E. Bed General	100%	93%	94%	100%		
F. Banks	100%	78%	77%	93%		
G. Vanes / J Hooks etc.	100%	83%	82%	82%		
H. Wads and Boulders	100%	80%	50%	50%		

Table 7b. Categorical Project Number and I Segment/Reach: UT E	Stream Fea Name: 205 - Bushy Branc	ature Visual - Kentwood ch (350 ft.)	l Stability A Park (Busł	ssessment 1y Branch)		
Feature	Initial	MY - 01	MY - 02	MY - 03	MY - 04	MY - 05
A. Riffles	100%	92%	85%	85%		
B. Pools	100%	90%	90%	90%		
C. Thalweg	100%	100%	100%	100%		
D. Bed General	100%	80%	80%	97%		
E. Banks	100%	95%	95%	91%		
F. Vanes / J Hooks etc.	100%	90%	90%	90%		

2.2.3 Quantitative Measures Summary Tables

Table 8a. Baseline Morphology and Hydraulic Summary

Project Number and Name: 205 – Kentwood Park (Bushy Branch)

Segment Reach: Bushy Branch (1,070 ft.)

Parameter	USG	S Gage	Data	Reg	ional C Interva	Curve 11	Pre-E	xisting C	Condition	Proje	ect Refe Stream	rence		Design		A	As-built	*
Dimension	Min	Max	Mean	Min	Max	Med	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean
Bankfull Width (ft)			36.0				25.0	36.0	31.0	11.0	12.5	11.5			24.0			18.0
Floodprone Width (ft)			100				67	135	107	70	137	97	52	>100				43
Bankfull Cross Sectional Area (ft ²)			135.8				51.5	69.8	63.0	11.2	12.8	12.2			40.0			22.2
Bankfull Mean Depth (ft)			3.8				1.8	2.1	2.0	0.9	1.2	1.1			1.7			1.2
Bankfull Maximum Depth (ft)			5.5				2.8	3.1	2.9	1.4	1.8	1.6	2.2	2.7	2.4			1.8
Width/Depth Ratio							12	20	16	9	14	11			14			14.6
Bank Height Ratio							2.2	2.9	2.6	1.1	1.4	1.2						1.3
Entrenchment Ratio			2.2				1.9	4.8	3.6	6.4	12.5		2.2	>6				2.4
Wetted Perimeter (ft)																		19.8
Hydraulic Radius (ft)																		1.1
Pattern																		
Channel Beltwidth (ft)							40	95	77	50	110	69	103	230	144			
Radius of Curvature (ft)							32	204	138	7	66	25	15	137	53			
Meander Wavelength (ft)							180	380	269	45	120	74	94	250	156			
Meander Width Ratio							5.8	12.2	8.7	3.9	10.4	6.5	3.9	10.4	6.5			
Profile																		
Riffle Length (ft)																		
Riffle Slope (ft/ft)							0.001	0.028	0.016	0.013	0.042	0.028	0.017	0.056	0.04			
Pool Length (ft)							16	60.1	34.3	11	112	30	24	233	62			
Pool Spacing (ft)							47	141	111	22	148	57	46	310	120			
Substrate																		
d50 (mm)									12			4			12			6
									45			17			45		L	44
Additional Reach Parameters																		
Valley Length (ft)																		
Channel Length (ft)								1.1.6			1.57			1.0				
Sinuosity			_					1.16			1.57			1.3				
water Surface Slope (ft/ft)								0.000			0.006			0.008				
BF Slope (II/II) Rosgon Classification		F						C-F4/	1		C-F4/1			$C_{-F4/2}$			C-F4/2	

*As-built data is from a single cross section survey.

Table 8b. Baseline Morphology and Hydraulic Summary

Project Number and Name: 205 – Kentwood Park (Bushy Branch)

Segment Reach: UT to Bushy Branch (350 ft.)

Parameter	USG	S Gage	Data	Reg	ional C Interva	Curve 1	Pre-E	xisting C	Condition	Proj	ect Refe Stream	rence		Design		A	As-built	*
Dimension	Min	Max	Mean	Min	Max	Med	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean
Bankfull Width (ft)			36.0				6.0	6.3	6.2	10.1	10.5	10.4			8.0			6.5
Floodprone Width (ft)			100				8	8.5	8.25	12.3	23	16.3	12	18				16
Bankfull Cross Sectional Area (ft ²)			135.8				7.3	8	7.7	8.9	10.9	10.1			5			2.9
Bankfull Mean Depth (ft)			3.8				1.2	1.3	1.25	0.8	1.1	1			0.6			0.4
Bankfull Maximum Depth (ft)			5.5				1.6	1.8	1.7	1.5	1.7	1.6	0.9	1.0	1.0			0.8
Width/Depth Ratio									5	9	12	10.3			12			14.5
Entrenchment Ratio			2.2				1.3	1.4	1.35	1.2	2.2	1.6	1.5	2.2				2.5
Bank Height Ratio							1.8	2.1	1.9									1.0
Wetted Perimeter (ft)																		6.9
Hydraulic Radius (ft)																		0.4
Pattern																		
Channel Beltwidth (ft)							58	105	82	19	49	34	14	38	26			
Radius of Curvature (ft)							42	94	75	12	23.4	15.8	10	18	14			
Meander Wavelength (ft)									490			127			98			
Meander Width Ratio									79			12.2			12.2			
Profile									.,,			1212						
Riffle Length (ft)																		
Riffle Slope (ft/ft)										0.01	0.055	0.032	0.012	0.06	0.03			
Pool Length (ft)										3	14	6.7	2.4	10.4	6.4			
Pool Spacing (ft)										27	43	32	21	33	25			
Substrate																		
d50 (mm)									12			11			12			6.3
									29			176			29			59
Additional Reach Parameters																		
Valley Length (ft)																		
Channel Length (II)								1 1 4			1.2			1 1 /				
Water Surface Slope (ft/ft)								1.14			1.2		1.14					
BF Slope (ft/ft)								0.033			0.022			0.024				
Rosgen Classification		Е						G4			B4/1			B4/2			B4/2	

*As-built data is from a single cross section survey.

 Table 9a. Morphology and Hydraulic Monitoring Summary

Project Number and Name: 205 – Kentwood Park (Bushy Branch)

Segment Reach: Bushy Branch (1,070 ft.)

Beginent Reden: Bushy Branen (1)	07010)																	
Parameter		(Cross Se	ection 2A	1				Cross S	ection 3					Cross S	ection 4	,	
			Ri	ffle					Rif	fle					Po	ool		
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Width (ft)		26.5	26.0				20.3	21.4	20.8				23.3	23.2	21.6			
Floodprone Width (ft)		43	42				36	38	38				> 44	>46	>46			
Bankfull Cross Sectional Area (ft ²)		38.5	37.1				34.6	38.2	38.7				50.8	39.7	42.4			
Bankfull Mean Depth (ft)		1.5	1.4				1.7	1.8	1.9				2.2	1.7	2.0			
Bankfull Maximum Depth (ft)		2.0	2.0				2.3	2.6	2.4				3.2	3.0	3.0			
Width/Depth Ratio		18.2	18.2				11.9	12.0	11.2				10.6	13.6	11.0			
Entrenchment Ratio		1.6	1.6				1.8	1.8	1.8				>1.9	>2.0	>2.0			
Bank Height Ratio		1.0	1.0				1.0	1.0	1.3				1.0	1.0	1.1			
Wetted Perimeter (ft)		27.8	27.6				21.8	23.4	22.5				25.4	25.0	23.6			
Hydraulic Radius (ft)		1.4	1.3				1.6	1.6	1.7				2.0	1.6	1.8			
Substrate																		
d50 (mm)		10	16				15	10	9				18	2	4			
d84 (mm)		41	41				38	35	24				59	32	49			

Table 9b. Morphology and Hydrau	lic Monit	oring Su	mmary									
Project Number and Name: 205 – H	Kentwood	l Park (B	ushy Br	anch)								
Segment Reach: UT to Bushy Bran	ch (350 f	t.)										
Parameter			Cross Se	ection 1					Cross S	lection 2		
			Po	ol					Ri	ffle		
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Width (ft)	8.9	8.5	8.5				7.9	8.0	6.8			
Floodprone Width (ft)	20	19	20				14	15	15			
Bankfull Cross Sectional Area (ft ²)	10.8	9.7	9.4				4.1	3.3	3.3			
Bankfull Mean Depth (ft)	1.2	1.1	1.1				0.5	0.4	0.5			
Bankfull Maximum Depth (ft)	1.8	1.7	1.5				0.9	0.9	0.7			
Width/Depth Ratio	7.4	7.4	7.7				15.2	19.4	14.2			
Entrenchment Ratio	2.2	2.2	2.3				1.7	1.9	2.3			
Bank Height Ratio	1.0	1.0	1.0				1.0	1.0	1.0			
Wetted Perimeter (ft)	10.1	12.1	10.1				8.2	8.2	7.1			
Hydraulic Radius (ft)	1.1	0.8	0.8				0.5	0.4	0.5			
Substrate												
d50 (mm)	30	39	23				30	38	21			
d84 (mm)	82	69	76				56	72	57			

Table 9c. Morphology and Hydraulic Monitoring Summary continued

Project Number and Name: 205 - Kentwood Park (Bushy Branch)

Segment Reach: Bushy Branch (1,070 ft.)

Beginene Redeni Bushy Brunen (1,070	10.)														
Parameter	MY	7 - 01 (20	005)	MY	- 02 (2	006)	MY	7 - 03 (2	007)	MY	- 04 (20	008)	MY	7 - 05 (20)09)
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	26	83	34	36	93	38	36	93	38						
Radius of Curvature (ft)	60	100	90	32	96	60	32	96	60						
Meander Wavelength (ft)	138	219	194	170	210	195	170	210	195						
Meander Width Ratio	1.6	5.3	2.2	1.2	4.5	2.5	1.5	4.0	1.6						
Profile															
Riffle Length (ft)	9	35	16	9	40	23	6	43	19						
Riffle Slope (ft/ft)	0.008	0.049	0.025	0.003	0.036	0.019	0.002	0.090	0.022						
Pool Length (ft)	13	96	32	8	130	33	3	57	9						
Pool Spacing (ft)	5	103	35	43	136	74	27	144	83						
Additional Reach Parameters															
Valley Length (ft)		845			845			845							
Channel Length (ft)		1,070			1,070			1,070							
Sinuosity		1.27			1.27			1.27							
Water Surface Slope (ft/ft)		0.0080			0.0080			0.0086							
Number of Bankfull Events		0			1			2							
Rosgen Classification		C4			C4			C4							

Table 9d. Morphology and Hydraulic Monitoring Summary continued

Project Number and Name: 205 - Kentwood Park (Bushy Branch)

Segment Reach: UT to Bushy Branch (350 ft.)

Segment Redent e i to Dushy Druhen	(000 14)														
Parameter	MY	7 - 01 (20	005)	MY	7 - 02 (2	006)	M	Y - 03 (2	007)	MY	- 04 (20	008)	MY	7 - 05 (20	009)
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)			N/A			N/A			N/A						
Radius of Curvature (ft)			N/A			N/A			N/A						
Meander Wavelength (ft)			N/A			N/A			N/A						
Meander Width Ratio			N/A			N/A			N/A						
Profile															
Riffle Length (ft)	10	38	15	5	38	11	7	35	13						
Riffle Slope (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						
Pool Length (ft)	6	46	10	6	36	10	2	15	6						
Pool Spacing (ft)	13	62	45	5	66	28	20	74	41						
Additional Reach Parameters															
Valley Length (ft)		318			318			318							
Channel Length (ft)		350			350			350							
Sinuosity		1.1			1.1			1.1							
Water Surface Slope (ft/ft)		N/A			N/A			N/A							
Number of Bankfull Events		0			1			2							
Rosgen Classification		B4			B4			B4							

Appendix A Vegetation Data

Table A1. Stem counts fo Project Number and Na	or each me: 20	spec 5 – K	ies a entw	rranged by vood Park (l	plot Bushy Bran	ch)		
Species		Plot		Initial Totals	Year 1 Totals	Year 2 Totals	Year 3 Totals	Survival %
	1	2	3	Totuis	Totals	Totuis	Totuls	
Shrubs								
Ilex verticillata	1	6		16	10	7	7	44%
Euonymus americana	3			6	3	4	3	50%
Lindera benzoin	3			4	4	4	3	75%
Sambucus canadensis				7	3	1	0	0%
Cornus amomum		17	2	34	24	20	19	56%
Alnus serrulata		6	1	14	11	7	7	50%
Trees								
Quercus michauxii	8		12	23	22	20	20	87%
Quercus phellos			5	4	5	5	5	125%
Quercus alba			2	2	2	2	2	100%
Fraxinus pennsylvanica	10			10	11	10	10	100%
Nyssa sylvatica	14			13	13	14	14	108%
Oxydendrum arboreum	3			8	4	3	3	38%
Betula nigra	8	12		18	16	21	20	111%
Cornus florida	1			1	1	1	1	100%
Platanus occidentalis		3		8	4	3	3	38%
Liriodendron tulipifera			4	6	4	4	4	67%
Acer negundo			3	4	4	3	3	75%
Ulmus americana			2	2	2	2	2	100%
Hamamelis virginiana	3			3	1	3	3	100%

A1 - Vegetation Data Tables

Explanation of Probable Causes of Vegetation Mortality

- The *Euonymus americana* mortality can be attributed to the high foot traffic from the disc golf course or browsing in Vetation Plot 1. Many paths cross through plot 1 and many plants (planted and unplanted) have been trampled.
- The decrease in *Lindera benzoin* in Plot 1 during Monitoring Year 03, could be attributed the heavy foot traffic through the plot or browsing pressure. The direct cause could not be determined, because the plant was missing.
- One *Cornus amomum* and one *Sambucus canadensis* were not found in Vegetation Plot 2. As stated in previous reports, this vegetation plot is located on a bankfull bench and is subject to frequent flooding, which may have caused the plants to become.
- The dead *Betula nigra* in Plot 2, during Monitoring Year 3, was due to insect damage.
- There is over 100% survival for *Quercus phellos* in Plot 3. This is due to a miscount during the as-built stem count.
- There is also over 100% survival for *Nyssa sylvatica* and *Betula nigra* in plots 1 and 2. This is due to either a miscount during the as-built and first year monitoring stem count or resprouts from the original plantings that had died back.

Table A Project Date : 7 Crew :	A2. Stem Numbe 7/13/07 B. Robe	Density r and N	y By Ple ame: 2	ot 105 -Ke	ntwood	Park (Bush	y Br	anch)																							
Plot #	Winterberry Ilex verticillata	Swamp Chestnut Oak Quercus michauxii	Green Ash Fraxinus pennsylvanica	Black Gum Nyssa sylvatica	Witch Hazel Hamamelis virginiana	Sourwood Oxydendrum arboreum	Hearts-a-busting	Euonymus americana	Spice Bush Lindera benzoin	River Birch	<i>Betula nigra</i> Flowering Dogwood	Cornus florida	Elderberry	Sambucus canadensis	Silky Dogwood	Cornus amomum	Sycamore	Platanus occidentalis	Tag Alder	Alnus serrulata	Willow Oak	Quercus phellos	Tulip Poplar	Liriodendron tulipifera	White Oak	Quercus alba	Box Elder	Acer negundo	American Elm	Ulmus americana	Total (Year 2)	Density (Trees/Acre)
1	1	8	10	14	3	3	3		3	8		1																			54	2,186
2	6									12					17	7	3		6												44	1,781
3		12													2				1		5		4		2	2	3		2		31	1,255
																					Strea	msid	e Co	mmu	inity	(Plo	ts 1 a	nd 2)		1,	984
																					Botto	mlaı	nd Ha	ardw	ood (Com	muni	ty (P	lot 3)	1,	255

<u>A2 – Representative Vegetation Problem Area Photos</u>

VP1 - English ivy (Hedera helix) on stream bank. Photo taken near Station 10+25. 11/12/07 - MY 03

VP2 - Kudzu (Pueraria lobata) along stream bank. Photo taken near Station 19+50. 11/12/07 - MY 03 Kentwood Park (Bushy Branch) 17 EEP Project # 205

VP3 - Bare terrace that is void of herbaceous vegetation. Photo taken near Station 11+25. 11/12/07 - MY 03

VP4 - Breakdown of coir matting with bare subsoil exposed on stream bank. Photo taken near Station 02+00. 11/12/07 - MY 03

VP5 - Erosion from path worn into stream bank from pedestrian access to the stream. Photo taken near Station 01+00. 11/12/07 - MY 03

A4 - Vegetation Monitoring Plot Photos

Vegetation Plot 1 Photo – Taken looking south from the north corner. 7/13/07 - MY 03

Vegetation Plot 1 Supplemental Photo – Taken looking upstream toward the center of the plot from established photo station #3. 7/13/07 - MY 03

Vegetation Plot 2 Photo – Taken looking south from the north corner. 7/13/07 - MY 03

Vegetation Plot 2 Supplemental Photo – Taken looking at center of plot from the top of the right bank across the stream from the vegetation plot. 7/13/07 - MY 03

Vegetation Plot 3 Photo – Taken looking east from the west corner. 7/13/07 - MY 03

Appendix B Geomorphologic Data

<u>B1 – Representative Stream Problem Area Photos</u>

SP1 - Bank erosion. Photo taken near Station 17+95 on left bank. 11/12/07 - MY 03

SP2 - Back arm scour on arm of J-hook. Photo taken near Station 13+50. 11/12/07 - MY 03

SP3 - Piping through boulders in cross vane. Photo taken near Station 16+00. 11/12/07 - MY 03

SP4 - Scour behind root wads. Photo taken near Station 16+00. 11/12/07 - MY 03

SP5 - Head stones of cross vane fallen into pool with head cutting. Photo taken near Station 2+20. 11/12/07 - MY 03

B2-Stream Photo Stations

Photo Point 1 – Taken looking downstream from bridge on Kaplan Drive. 11/12/07 - MY 03

Photo Point 1, supplemental – Taken looking downstream from streambed in front of bridge on Kaplan Drive. 11/12/07 - MY 03

Photo Point 2 – Taken looking upstream. 11/12/07 - MY 03

Photo Point 3 – Taken looking upstream. 11/12/07 - MY 03

Photo Point 3 – Taken looking downstream. 11/12/07 - MY 03

Photo Point 4 – Taken looking upstream. 11/12/07 - MY 03

Photo Point 4 – Taken looking downstream. 11/12/07 - MY 03

Photo Point 5 – Taken looking upstream. 11/12/07 - MY 03

Photo Point 5 – Taken looking downstream. 11/12/07 - MY 03

Photo Point 6 – Taken looking upstream. 11/12/07 - MY 03

Photo Point 6 – Taken looking downstream. 11/12/07 - MY 03

B3-Qualitative Visual Stability Assessment Table

Table B2. Qua Project Numbe Segment/Reach	litative Visual Stability Assessment er and Name: 205 – Kentwood Park (Bushy Branch) n: Bushy Branch (1,070 ft.))				
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As-built *	Total Number / feet in unstable state	% Perform. in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	9	12	N/A	75%	
	2. Armor stable (e.g. no displacement)?	9	12	N/A	75%	
	3. Facet grade appears stable?	9	12	N/A	75%	
	4. Minimal evidence of embedding/fining?	9	12	N/A	75%	
	5. Length appropriate?	9	12	N/A	75%	75%
B. Pools	1. Present? (e.g. no severe aggradation)	11	12	N/A	92%	
	2. Sufficiently deep (Dmax pool:Mean Bkf > 1.6?)	11	12	N/A	92%	
	3. Length appropriate?	10	12	N/A	83%	94%
C. Thalweg	1. Upstream of meander bend centering?	6	8	N/A	75%	
	2. Downstream of meander centering?	6	8	N/A	75%	75%
D. Meanders	 Outer bend in state of limited/controlled erosion? Of those eroding, # w/ concomitant point bar 	6	8	N/A	75%	
	formation?	2	2	N/A	100%	
	3. Apparent Rc within spec?	8	8	N/A	100%	010/
F Bed General	4. Sufficient floodplain access and relief?	5	8	N/A	63%	81%
	formation)	N/A	N/A	0/0	100%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting?	N/A	N/A	0/0	100%	100%
F. Bank	1. Actively eroding, wasting, or slumping bank	N/A	N/A	7/150	93%	93%
G. Vanes	1. Free of back or arm scour?	10	17	N/A	59%	
	2. Height appropriate?	15	17	N/A	88%	
	3. Angle and geometry appear appropriate?	15	17	N/A	88%	
	4. Free of piping or other structural failures?	16	17	N/A	94%	82%
H. Wads /	1. Free of scour?	1	2	N/A	50%	
Boulders	2. Footing stable?	1	2	N/A	50%	50%

* Total number of features per as-built estimated from as-built profile and planview sheets.

Monitoring Year 03 documented fewer problem areas than the previous year's monitoring. Many of the streambanks that had been eroding in previous years have become stabilized by vegetation, or even if they did not have vegetation covering them, they did not appear to be actively eroding. Some bed instability was apparent during the annual stream assessment. This was evident in a few areas where the features had adjusted their length and appeared to still be undergoing adjustment.

B4 - Cross Section Plots

River Basin.	Neuse			1211 A	
Watershed:	Kentwood Park, UT to Bushy Branch		Street States of	AT SE I	State States
XSID	XS - 1. Pool		Section of the		
Drainage Area (sq mi):	0.06		the second second		AL PARTY AND
Date:	7/10/2007		State March		
Field Crew:	B. Roberts, C. Wolf				
Station Elevation	SUMMARY DATA			A CONTRACTOR	
0.0 106.99	Bankfull Elevation:	102.2	Stand Stand	ALL MARKEN	
4.6 106.66	Bankfull Cross-Sectional Area:	9.4	A A A A A A A A A A A A A A A A A A A		The Part of the Part
7.3 106.26	Bankfull Width:	8.5	Constant Constant	and a set of the	
8.6 105.76	Flood Prone Area Elevation:	103.7	the Contraction		A CARLER AND AND A CARLER AND A C
10.2 104.91	Flood Prone Width:	20		SAMO A SAM	
12.1 103.88	Max Depth at Bankfull:	1.5	be- alter and		
13.8 103.22	Mean Depth at Bankfull:	1.1			A CONTRACTOR OF
14.4 102.59	W / D Ratio:	7.7			
16.3 101.68	Entrenchment Ratio:	2.3			
17.5 101.14	Bank Height Ratio:	1.0			And a second second
18.5 100.87				A CARLES AND A CAR	al second
19.4 100.85					
20.1 100.68					
21.0 100.82	Neuse Riv	ver Basin, Kentwo	ood Park, UT to Busl	y Branch , XS - 1, Pool	
21.6 100.91					
22.9 101.78	108 -				
23.7 102.20	100			 Bankfull 	
25.3 102.32				 Flood Prone Area 	
27.0 102.45	100			MY-00	
28.7 102.65	100			MY-01	
30.0 103.02				MY-02	
31.1 103.44	ı (fi			MY-03	
31.9 103.86	.0 104				
32.7 104.31	ava -				
34.5 105.02	EI				
36.4 105.32	102	<u></u>	/		
38.2 105.35					
	100	+	+		
	0	10	20	30	40
	~ · · · ·				
			Station (feet)		

River Basin:	Neuse
Watershed:	Kentwood Park, UT to Bushy Branch
XS ID	XS - 2, Riffle
Drainage Area (sq mi):	0.06
Date:	7/10/2007
Field Crew:	B. Roberts, C. Wolf

Station	Elevation
0.0	100.00
2.7	99.84
4.5	99.68
5.2	99.54
6.0	99.12
6.4	98.63
7.5	98.20
10.1	97.36
12.6	97.25
13.8	97.06
14.5	96.85
15.1	96.71
15.6	96.38
16.7	96.19
17.7	96.30
18.3	96.28
18.8	96.63
20.0	96.97
21.3	97.17
22.7	97.37
24.3	98.32
26.1	99.34
27.8	100.13
29.5	100.38
31.4	100.5

SUMMARY DATA	
Bankfull Elevation:	96.9
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	6.8
Flood Prone Area Elevation:	97.6
Flood Prone Width:	15
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	14.2
Entrenchment Ratio:	2.3
Bank Height Ratio:	1.0

River Basin:	Neuse
Watershed:	Kentwood Park, Bushy Branch
XS ID	XS - 2a, Riffle
Drainage Area (sq mi):	1.27
Date:	7/11/2007
Field Crew:	B. Roberts, C. Wolf

Station	Elevation
0.0	96.73
0.2	96.58
2.1	96.30
4.7	96.67
7.3	96.13
10.1	94.70
12.6	93.68
15.8	92.55
17.3	92.60
20.4	91.24
20.7	91.11
21.4	91.11
22.6	90.78
24.8	90.74
26.3	90.79
27.4	90.85
28.3	90.85
29.1	90.90
30.3	90.84
31.7	90.84
32.7	90.87
34.1	90.80
35.8	90.80
37.2	90.77
39.7	90.74
39.6	91.55
40.3	92.03
42.2	92.84
44.8	93.28
47.2	93.07
50.8	93.27
57.9	97.02
63.1	97.62
63.2	98.00

SUMMARY DATA	
Bankfull Elevation:	92.4
Bankfull Cross-Sectional Area:	37.1
Bankfull Width:	26.0
Flood Prone Area Elevation:	94.1
Flood Prone Width:	42
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	1.4
W / D Ratio:	18.2
Entrenchment Ratio:	1.6
Bank Height Ratio:	1.0

River Basin:	Neuse
Watershed:	Kentwood Park, Bushy Branch
XS ID	XS - 3, Riffle
Drainage Area (sq mi):	1.27
Date:	7/11/2007
Field Crew:	B. Roberts, C. Wolf

Station	Elevation
0.0	95.61
4.6	94.90
8.0	94.02
11.6	94.52
13.9	94.37
23.2	95.51
30.9	95.21
38.5	92.16
39.8	92.22
41.9	92.64
46.3	92.36
49.8	90.96
50.7	90.68
51.1	89.58
51.7	89.37
53.1	89.44
54.8	89.60
55.1	89.53
57.5	89.37
59.9	89.43
64.5	89.71
66.2	90.12
68.3	91.49
69.5	92.89
72.6	95.41
82.8	95.55
104.9	95.05

SUMMARY DATA	
Bankfull Elevation:	91.8
Bankfull Cross-Sectional Area:	38.7
Bankfull Width:	20.8
Flood Prone Area Elevation:	94.2
Flood Prone Width:	38
Max Depth at Bankfull:	2.4
Mean Depth at Bankfull:	1.9
W / D Ratio:	11.2
Entrenchment Ratio:	1.8
Bank Height Ratio:	1.2

River Basin:	Neuse
Watershed:	Kentwood Park, Bushy Branch
XS ID	XS - 4, Pool
Drainage Area (sq mi):	1.27
Date:	7/11/2007
Field Crew:	B. Roberts, C. Wolf

Station	Elevation
0.0	92.21
1.5	92.54
4.6	92.52
8.3	91.16
8.9	89.90
9.3	89.00
10.1	87.31
11.5	86.98
12.0	86.88
12.2	86.43
13.4	86.41
14.7	86.61
15.8	86.78
18.4	86.77
23.7	87.42
26.1	88.03
27.0	88.50
28.4	88.72
29.2	88.94
30.7	89.40
31.8	89.48
33.0	90.23
35.8	90.87
39.7	91.02
43.6	91.83
48.6	93.01
53.8	92.92
55.8	92.81
57.4	92.95

SUMMARY DATA	
Bankfull Elevation:	89.4
Bankfull Cross-Sectional Area:	42.4
Bankfull Width:	21.6
Flood Prone Area Elevation:	92.7
Flood Prone Width:	>46
Max Depth at Bankfull:	3.0
Mean Depth at Bankfull:	2.0
W / D Ratio:	11.0
Entrenchment Ratio:	> 2.0
Bank Height Ratio:	1.1

<u>B6 - Pebble Count Plots</u>

Cros	ss Section 1	Pool - MYC)3								
Particle	Millimeter		Count				Particle Size D	istribution			
Silt/Clay	< 0.062	S/C					XS 1 P	ol			
Very Fine	.062125	S									
Fine	.12525	А	2		l						
Medium	.2550	Ν	3	100% -							
Coarse	.50 - 1	D	5					1 A A			
Very Coarse	1 - 2	S	9					and the second s			
Very Fine	2 - 4		4	- ‰0% ⊒				1			
Fine	4 - 5.7	G	3	Ē				4		M	/Y01
Fine	5.7 - 8	R	1	<u> </u>							/Y02
Medium	8 - 11.3	А	3	har			,	\$ *			/Y03
Medium	11.3 - 16	V	11	5 40% -				/ _			
Coarse	16 - 22.6	E	12	Fin				/			
Coarse	22.6 - 32	L	19	* _{20% -}			A ANA				
Very Coarse	32 - 45	S	12	2070			- w				
Very Coarse	45 - 64		5			La V					
Small	64 - 90	С	5	0% -			10	100	1000 100	00	
Small	90 - 128	0	6	0.	01 0.1	'-	10	100	1000 100	00	
Large	128 - 180	В	4			Pa	rticle Size - Mil	imeters			
Large	180 - 256	L	5								
Small	256 - 362	В			Size (mm)		Size Distr	ibution	Ту	pe	
Small	362 - 512	L		D16	1.8		mean	11.7	silt/clay	0%	
Medium	512 - 1024	D		D35	15		dispersion	8.0	sand	17%	
Lrg- Very Lrg	1024 - 2048	R		D50	23		skewness	-0.23	gravel	64%	
Bedrock	>2048	BDRK	1	D65	31				cobble	18%	
		Total	110	D84	76				boulder	0%	
Note:				D95	170				bedrock	1%	
									hardpan	0%	
									wood/det	0%	
									artificial	0%	

Cros	ss Section 2 F	Riffle - MYC	3								
Particle	Millimeter		Count				Particle Size D	istribution			
Silt/Clay	< 0.062	S/C					XS 2 Ri	ffle			
Very Fine	.062125	S									
Fine	.12525	А	1								
Medium	.2550	Ν	1	100%							
Coarse	.50 - 1	D	3	10070				A A A A			
Very Coarse	1 - 2	S	4	vov ive)				1			
Very Fine	2 - 4		12	nlat				*			
Fine	4 - 5.7	G	4	En la				4			/Y01
Fine	5.7 - 8	R	3	<u> </u>						— — N	/Y02
Medium	8 - 11.3	А	5	Thai			/	• /		N	/Y03
Medium	11.3 - 16	V	7	ר 40% ש				/ <mark>/</mark>			
Coarse	16 - 22.6	E	12	Fin							
Coarse	22.6 - 32	L	14	ا 20% ا			- And M				
Very Coarse	32 - 45	S	9	2070		/					
Very Coarse	45 - 64		15	00/							
Small	64 - 90	C	4	0%	01 01	1	10	100	1000 100	000	
Small	90 - 128	0	3	0.	.01 0.1	' D-	ntiala Cina Mil	limetere	1000 100	000	
Large	128 - 180	В	3			Pa	rticle Size - IVIII	limeters			
Large	180 - 256	L	1		~	1	<u> </u>				
Small	256 - 362	В		DIC	Size (mm)	-	Size Dist	ribution	T	/pe	_
Small	362 - 512	L		D16	3		mean	13.1	silt/clay	0%	
	512 - 1024	D		D35	12		dispersion	4.9	sand	9% 70%	
Lrg- very Lrg	1024 - 2048	R	-	D50	21		skewness	-0.18	gravel	79%	
Bedrock	>2048	BDRK	1	D65	32				cobble	11%	
		Total	102	D84	57				boulder	0%	
Note:				D95	110				bedrock	1%	
									hardpan	0%	
									wood/det	0%	
									artificial	0%	

Cros	s Section 2A	Riffle - MY	03										
Particle	Millimeter		Count					Particle Size D	istribution				
Silt/Clay	< 0.062	S/C						XS 2A R	iffle				
Very Fine	.062125	S											
Fine	.12525	А	1										
Medium	.2550	Ν	1	100%									
Coarse	.50 - 1	D	1						a de la de l	• • •			
Very Coarse	1 - 2	S	12						-				
Very Fine	2 - 4		9	mlati)	4				
Fine	4 - 5.7	G	2	Ē				, je stali se stali s					
Fine	5.7 - 8	R	4	<u>ပ</u> 60%	1			/	•				Y02
Medium	8 - 11.3	А	7	har				T f					Y03
Medium	11.3 - 16	V	12	⊢ ຮ 40%	· 								
Coarse	16 - 22.6	E	12	Fine									
Coarse	22.6 - 32	L	13					A A A					
Very Coarse	32 - 45	S	10	2070			× 1						
Very Coarse	45 - 64		7										
Small	64 - 90	С	4	0%	·	• •						_	
Small	90 - 128	0	2		0.01	0.1	1	10	100	1000	10000)	
Large	128 - 180	В					Pa	rticle Size - Mil	imeters				
Large	180 - 256	L											_
Small	256 - 362	В			Size ((mm)		Size Distr	ibution		Туре	e	
Small	362 - 512	L		D16		2.1		mean	9.3		silt/clay	0%	
Medium	512 - 1024	D		D35		9.6		dispersion	5.1		sand	15%	
Lrg- Very Lrg	1024 - 2048	R		D50		16		skewness	-0.21		gravel	76%	
Bedrock	>2048	BDRK	3	D65		23					cobble	6%	
		Total	100	D84		41					boulder	0%	
Note:				D95		71					bedrock	3%	
											hardpan	0%	
											wood/det	0%	
											artificial	0%	

Cros	ss Section 3 F	Riffle - MYC)3										
Particle	Millimeter		Count					Particle Size D	istribution				
Silt/Clay	< 0.062	S/C						XS 3 Ri	ffle				
Very Fine	.062125	S											
Fine	.12525	А											
Medium	.2550	Ν		100%							_		
Coarse	.50 - 1	D	5	10070							-		
Very Coarse	1 - 2	S	18	(o 00)									
Very Fine	2 - 4		12	ulati	-			4					
Fine	4 - 5.7	G	4	n					7			— M'	Y01
Fine	5.7 - 8	R	5	<u> </u>	-							— <u>—</u> M`	Y02
Medium	8 - 11.3	А	15	har									Y03
Medium	11.3 - 16	V	17	۲ ه 40%									
Coarse	16 - 22.6	E	6	Fine				7 1					
Coarse	22.6 - 32	L	12				, <u> </u>	6 4					
Very Coarse	32 - 45	S	5	2078									
Very Coarse	45 - 64		1				and a						
Small	64 - 90	С		0%									
Small	90 - 128	0	1	0	.01	0.1	1	10	100	1000	10000)	
Large	128 - 180	В					Pa	rticle Size - Mil	limeters				
Large	180 - 256	L											
Small	256 - 362	В			Size (m	m)		Size Distr	ibution		Туре	3	
Small	362 - 512	L		D16		1.5		mean	6.0	S	silt/clay	0%	
Medium	512 - 1024	D		D35		4.1		dispersion	4.4		sand	23%	
Lrg- Very Lrg	1024 - 2048	R		D50		9.2		skewness	-0.17		gravel	76%	
Bedrock	>2048	BDRK		D65		13					cobble	1%	
		Total	101	D84		24				ł	boulder	0%	
Note:				D95		37				b	bedrock	0%	
										h	nardpan	0%	
										W	ood/det	0%	
										a	rtificial	0%	

Cros	ss Section 4	Pool - MY0	3									
Particle	Millimeter		Count				Particle Size D	istribution				
Silt/Clay	< 0.062	S/C					XS 4 P	ol				
Very Fine	.062125	S										
Fine	.12525	А	1									
Medium	.2550	Ν	15	100% -								
Coarse	.50 - 1	D	9					A A A A				
Very Coarse	1 - 2	S	16	ive)				John Canad	••••			
Very Fine	2 - 4		6									
Fine	4 - 5.7	G	3	ů n							— M`	Y01
Fine	5.7 - 8	R	1	<u> </u>							— — M`	Y02
Medium	8 - 11.3	А	8	har								Y03
Medium	11.3 - 16	V	5	⊢ ъ ^{40%} -						_		
Coarse	16 - 22.6	E	4	Ein								
Coarse	22.6 - 32	L	5	× 20% -								
Very Coarse	32 - 45	S	2	2070		1 ×						
Very Coarse	45 - 64		9									
Small	64 - 90	C	3	0% -			10	100	1000		0	
Small	90 - 128	0	2	0.	01 0.1	1	10	100	1000	1000	5	
Large	128 - 180	В	1			Pa	rticle Size - Mil	imeters				
Large	180 - 256	L	2									
Small	256 - 362	В			Size (mm)		Size Distr	ibution		Тур	e	
Small	362 - 512	L		D16	0.47		mean	4.8	silt/	clay	0%	
Medium	512 - 1024	D		D35	1.4		dispersion	10.6	5	sand	39%	
Lrg- Very Lrg	1024 - 2048	R		D50	3.6		skewness	0.09	gr	avel	41%	
Bedrock	>2048	BDRK	12	D65	12				col	bble	8%	
		Total	104	D84	49				bou	lder	0%	
Note:				D95	97				bedi	rock	12%	
									hard	lpan	0%	
									wood	l/det	0%	
									artif	icial	0%	

Appendix C Current Conditions Plan View

* INDICATES AS-BUILT STRUCTURE THAT WAS NOT ORIGINALLY INCLUDED IN THE AS-BUILT DRAWING

	Associates of Mc	ENCINEERS • PLANNERS • SCIENTISTS	4601 SIX FORKS ROAD BALEICH NORTH CAROLINA 27609	
			SYM.	
			DESCRIPTION	REVISIONS
			 DATE	
			APPROVED	

kudzu Growth

BANK EROSION

STRESSED ROCK VANE

UNDERCUT BANK EROSION

FUNCTIONAL ROCK VANE

FUNCTIONAL CROSS VANE

kudzu Growth

FUNCTIONAL CROSS VANE